“The number Pi, Isaac Newton and the graffiti of
Woolsthorpe Manor”

Time 15 Mar 2024 05:00 PM

Kyiv https://us05web.zoom.us/j/86075119007?
pwd=002tCkOe7WMjbID1bc2SkUO22uak34.1

The International Day of Mathematics (IDM) is a fantastic
opportunity to celebrate the beauty of mathematics. Join
us for an open online meeting of the mathematical circle
and immerse yourself in the wonders of this captivating
field! It's a day to connect with fellow math enthusiasts
from around the world, share knowledge, and explore the
endless possibilities that mathematics offers. Whether
you're a student, educator, or simply someone who
appreciates the power of numbers, this event promises to
be an inspiring and enlightening experience. Let's come
together and embrace the magic of mathematics!

«MeHi copoMHO cka3zamu eamM, 00 CKinnbKox yupp A eie yi
pPO3paxyHKU, He MarYu Ha Mol Yac iHwux cnpae».lcaak
HeromoH, ocob6ucmuti wjooeHHuUk, 1666 pik
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TEACHER NOTES AND SOLUTIONS

In 1666 Newton found Pi to sixteen decimal places by evaluating the first
twenty-two terms of this sum:

3v3 1 1
12 5x25 28x2 72%x2")

E=T+24(

For Pi Day 2020 Matt Parker of Think Maths followed in Newton's footsteps
and evaluated terms of this sum by hand to get an approximation for Pi. Matt
had help from schools across the world who evaluated some of the terms for
him - a total of twenty terms were evaluated, almost matching Newton's
twenty-two. It truly was a mass participation calculation!

Deriving Newton's Sum

At Think Maths we investigated where this sum came from and discovered
that Newton's derivation of the expression is surprisingly satisfying and
accessible for A-level students.

The derivation involves the topics of: equation of a circle, binomial
expansion, finding definite integrals, areas of sectors of circles, index laws,
trigonometry, Pythagoras' theorem.

Challenge your students to derive Newton's sum for Pi. We've made a sheet
‘Newton's Approximation for Pi’ that you can use to introduce the
problem to students. We haven't provided much structure - this is so
teachers can decide how much structure/hints it is best to give their own
students. See our solutions/the full derivation on the page below.

Evaluating Newton's Sum

Alternatively, perhaps your whole school/multiple classes could work
together to evaluate by hand as many terms of the sum as they can.

Newton evaluated the first twenty-two terms of the sum, and Matt Parker
evaluated the first twenty terms. Can your school match Matt's work? We've
written out the first twenty terms of the sum on the page below for your use.

Students could watch Matt’s video first to get ideas for how to do the written
calculations.
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Modular equations and approximations to
Quarterly Journal of Mathematics, XLV, 1914, 350 - 372

1. If we suppose that

{1 +e .:J::Hl q -1"""-.-'"“}"]_ ie ﬁi':\,-".u}___ i 21” '.v,,.l’ﬂ'!.l(;n “_]

(1 —e™VF)(1 — e VR)(1 — ¢~ 3VR)... = 28 "VR/H, (2)

then (7, and g, can always be expressed as roots of algebraical equations when n is any
rational number. For we know that

1+l +¢)1+¢)... :Euluq:llfk.ﬂ:"j v (3)

(1—g)(1 =)L =g =2bgdip—Thitd. (4)
Now the relation between the moduli & and [, which makes

K LU
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where n = v/s, r and s being positive integers, is expressed by the modular equation of the
rsth degree. If we suppose that k=1I' k' =1, sothat K = L', K’ = L, then

-nLl'L _ ‘_,—rr\.fn

g=e

and the corresponding value of & may be found by the solution of an algebraical equation.
From (1), (2), (3) and (4) it may easily be deduced that

L'I..u — E%H:J(;ru

G, = {;1_.'1:1' I.l'!."fﬂ = Qi/n»

v it ! :
(9nGn)* (G — g) = - (7)

I shall consider only integral values of n. It follows from (7) that we need consider only one
of Gy, or gy for any given value of n; and from (5) that we may suppose n not divisible by
4. It is most convenlent to consider g, when n is even, and G, when n is odd.
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A Brief History of the Most Remarkable Numbers x, g
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celebrated Newton method of approximation of 7 o many decimal places 15 included. The
appearance ol m inmany problems, formulas, elliptic imlegrals and in probability and statistics
is presented with examples ol applications including the TehebychelT problem of prime num-
bers, the Buffon needle problem and the Euler gquadratic polynomial. The golden number g
and its applications i bra und geometry are briefly discussed. The Feigenbaum universal
comstant, & 15 dis C and it 15 found to oceur in many period doubling bifurcation
phenomena in the celebrated logistic map and the Lorenz differential equatio em with
chaotic (or aperiodic) solutions. Included is a numerically computed Lorenz

resembles a burterfly or figure eight. The Lorenz attractor is a sivan

has a non-integer (or fractal) dimension. The major focus of this article is to provide basic
pedagogical information through historical approach to mathematics teaching and learning
of the fundamental knowledge and skills required for students and teachers at all levels so
that they can understand the conceprs of mathematics, and mathematics education in science
and technology and pursue further research,

Keywords  Universal constant 7 - Golden number g - Feigenbaum's constant - & - Chaos
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